danicoin/external/unbound/iterator/iter_utils.c
Erik de Castro Lopo a85b5759f3 Upgrade unbound library
These files were pulled from the 1.6.3 release tarball.

This new version builds against OpenSSL version 1.1 which will be
the default in the new Debian Stable which is due to be released
RealSoonNow (tm).
2017-06-17 23:04:00 +10:00

1171 lines
35 KiB
C

/*
* iterator/iter_utils.c - iterative resolver module utility functions.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains functions to assist the iterator module.
* Configuration options. Forward zones.
*/
#include "config.h"
#include "iterator/iter_utils.h"
#include "iterator/iterator.h"
#include "iterator/iter_hints.h"
#include "iterator/iter_fwd.h"
#include "iterator/iter_donotq.h"
#include "iterator/iter_delegpt.h"
#include "iterator/iter_priv.h"
#include "services/cache/infra.h"
#include "services/cache/dns.h"
#include "services/cache/rrset.h"
#include "util/net_help.h"
#include "util/module.h"
#include "util/log.h"
#include "util/config_file.h"
#include "util/regional.h"
#include "util/data/msgparse.h"
#include "util/data/dname.h"
#include "util/random.h"
#include "util/fptr_wlist.h"
#include "validator/val_anchor.h"
#include "validator/val_kcache.h"
#include "validator/val_kentry.h"
#include "validator/val_utils.h"
#include "validator/val_sigcrypt.h"
#include "sldns/sbuffer.h"
#include "sldns/str2wire.h"
/** time when nameserver glue is said to be 'recent' */
#define SUSPICION_RECENT_EXPIRY 86400
/** penalty to validation failed blacklisted IPs */
#define BLACKLIST_PENALTY (USEFUL_SERVER_TOP_TIMEOUT*4)
/** fillup fetch policy array */
static void
fetch_fill(struct iter_env* ie, const char* str)
{
char* s = (char*)str, *e;
int i;
for(i=0; i<ie->max_dependency_depth+1; i++) {
ie->target_fetch_policy[i] = strtol(s, &e, 10);
if(s == e)
fatal_exit("cannot parse fetch policy number %s", s);
s = e;
}
}
/** Read config string that represents the target fetch policy */
static int
read_fetch_policy(struct iter_env* ie, const char* str)
{
int count = cfg_count_numbers(str);
if(count < 1) {
log_err("Cannot parse target fetch policy: \"%s\"", str);
return 0;
}
ie->max_dependency_depth = count - 1;
ie->target_fetch_policy = (int*)calloc(
(size_t)ie->max_dependency_depth+1, sizeof(int));
if(!ie->target_fetch_policy) {
log_err("alloc fetch policy: out of memory");
return 0;
}
fetch_fill(ie, str);
return 1;
}
/** apply config caps whitelist items to name tree */
static int
caps_white_apply_cfg(rbtree_type* ntree, struct config_file* cfg)
{
struct config_strlist* p;
for(p=cfg->caps_whitelist; p; p=p->next) {
struct name_tree_node* n;
size_t len;
uint8_t* nm = sldns_str2wire_dname(p->str, &len);
if(!nm) {
log_err("could not parse %s", p->str);
return 0;
}
n = (struct name_tree_node*)calloc(1, sizeof(*n));
if(!n) {
log_err("out of memory");
free(nm);
return 0;
}
n->node.key = n;
n->name = nm;
n->len = len;
n->labs = dname_count_labels(nm);
n->dclass = LDNS_RR_CLASS_IN;
if(!name_tree_insert(ntree, n, nm, len, n->labs, n->dclass)) {
/* duplicate element ignored, idempotent */
free(n->name);
free(n);
}
}
name_tree_init_parents(ntree);
return 1;
}
int
iter_apply_cfg(struct iter_env* iter_env, struct config_file* cfg)
{
int i;
/* target fetch policy */
if(!read_fetch_policy(iter_env, cfg->target_fetch_policy))
return 0;
for(i=0; i<iter_env->max_dependency_depth+1; i++)
verbose(VERB_QUERY, "target fetch policy for level %d is %d",
i, iter_env->target_fetch_policy[i]);
if(!iter_env->donotq)
iter_env->donotq = donotq_create();
if(!iter_env->donotq || !donotq_apply_cfg(iter_env->donotq, cfg)) {
log_err("Could not set donotqueryaddresses");
return 0;
}
if(!iter_env->priv)
iter_env->priv = priv_create();
if(!iter_env->priv || !priv_apply_cfg(iter_env->priv, cfg)) {
log_err("Could not set private addresses");
return 0;
}
if(cfg->caps_whitelist) {
if(!iter_env->caps_white)
iter_env->caps_white = rbtree_create(name_tree_compare);
if(!iter_env->caps_white || !caps_white_apply_cfg(
iter_env->caps_white, cfg)) {
log_err("Could not set capsforid whitelist");
return 0;
}
}
iter_env->supports_ipv6 = cfg->do_ip6;
iter_env->supports_ipv4 = cfg->do_ip4;
return 1;
}
/** filter out unsuitable targets
* @param iter_env: iterator environment with ipv6-support flag.
* @param env: module environment with infra cache.
* @param name: zone name
* @param namelen: length of name
* @param qtype: query type (host order).
* @param now: current time
* @param a: address in delegation point we are examining.
* @return an integer that signals the target suitability.
* as follows:
* -1: The address should be omitted from the list.
* Because:
* o The address is bogus (DNSSEC validation failure).
* o Listed as donotquery
* o is ipv6 but no ipv6 support (in operating system).
* o is ipv4 but no ipv4 support (in operating system).
* o is lame
* Otherwise, an rtt in milliseconds.
* 0 .. USEFUL_SERVER_TOP_TIMEOUT-1
* The roundtrip time timeout estimate. less than 2 minutes.
* Note that util/rtt.c has a MIN_TIMEOUT of 50 msec, thus
* values 0 .. 49 are not used, unless that is changed.
* USEFUL_SERVER_TOP_TIMEOUT
* This value exactly is given for unresponsive blacklisted.
* USEFUL_SERVER_TOP_TIMEOUT+1
* For non-blacklisted servers: huge timeout, but has traffic.
* USEFUL_SERVER_TOP_TIMEOUT*1 ..
* parent-side lame servers get this penalty. A dispreferential
* server. (lame in delegpt).
* USEFUL_SERVER_TOP_TIMEOUT*2 ..
* dnsseclame servers get penalty
* USEFUL_SERVER_TOP_TIMEOUT*3 ..
* recursion lame servers get penalty
* UNKNOWN_SERVER_NICENESS
* If no information is known about the server, this is
* returned. 376 msec or so.
* +BLACKLIST_PENALTY (of USEFUL_TOP_TIMEOUT*4) for dnssec failed IPs.
*
* When a final value is chosen that is dnsseclame ; dnsseclameness checking
* is turned off (so we do not discard the reply).
* When a final value is chosen that is recursionlame; RD bit is set on query.
* Because of the numbers this means recursionlame also have dnssec lameness
* checking turned off.
*/
static int
iter_filter_unsuitable(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt_addr* a)
{
int rtt, lame, reclame, dnsseclame;
if(a->bogus)
return -1; /* address of server is bogus */
if(donotq_lookup(iter_env->donotq, &a->addr, a->addrlen)) {
log_addr(VERB_ALGO, "skip addr on the donotquery list",
&a->addr, a->addrlen);
return -1; /* server is on the donotquery list */
}
if(!iter_env->supports_ipv6 && addr_is_ip6(&a->addr, a->addrlen)) {
return -1; /* there is no ip6 available */
}
if(!iter_env->supports_ipv4 && !addr_is_ip6(&a->addr, a->addrlen)) {
return -1; /* there is no ip4 available */
}
/* check lameness - need zone , class info */
if(infra_get_lame_rtt(env->infra_cache, &a->addr, a->addrlen,
name, namelen, qtype, &lame, &dnsseclame, &reclame,
&rtt, now)) {
log_addr(VERB_ALGO, "servselect", &a->addr, a->addrlen);
verbose(VERB_ALGO, " rtt=%d%s%s%s%s", rtt,
lame?" LAME":"",
dnsseclame?" DNSSEC_LAME":"",
reclame?" REC_LAME":"",
a->lame?" ADDR_LAME":"");
if(lame)
return -1; /* server is lame */
else if(rtt >= USEFUL_SERVER_TOP_TIMEOUT)
/* server is unresponsive,
* we used to return TOP_TIMEOUT, but fairly useless,
* because if == TOP_TIMEOUT is dropped because
* blacklisted later, instead, remove it here, so
* other choices (that are not blacklisted) can be
* tried */
return -1;
/* select remainder from worst to best */
else if(reclame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT*3; /* nonpref */
else if(dnsseclame || a->dnsseclame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
else if(a->lame)
return rtt+USEFUL_SERVER_TOP_TIMEOUT+1; /* nonpref */
else return rtt;
}
/* no server information present */
if(a->dnsseclame)
return UNKNOWN_SERVER_NICENESS+USEFUL_SERVER_TOP_TIMEOUT*2; /* nonpref */
else if(a->lame)
return USEFUL_SERVER_TOP_TIMEOUT+1+UNKNOWN_SERVER_NICENESS; /* nonpref */
return UNKNOWN_SERVER_NICENESS;
}
/** lookup RTT information, and also store fastest rtt (if any) */
static int
iter_fill_rtt(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt* dp, int* best_rtt, struct sock_list* blacklist)
{
int got_it = 0;
struct delegpt_addr* a;
if(dp->bogus)
return 0; /* NS bogus, all bogus, nothing found */
for(a=dp->result_list; a; a = a->next_result) {
a->sel_rtt = iter_filter_unsuitable(iter_env, env,
name, namelen, qtype, now, a);
if(a->sel_rtt != -1) {
if(sock_list_find(blacklist, &a->addr, a->addrlen))
a->sel_rtt += BLACKLIST_PENALTY;
if(!got_it) {
*best_rtt = a->sel_rtt;
got_it = 1;
} else if(a->sel_rtt < *best_rtt) {
*best_rtt = a->sel_rtt;
}
}
}
return got_it;
}
/** filter the address list, putting best targets at front,
* returns number of best targets (or 0, no suitable targets) */
static int
iter_filter_order(struct iter_env* iter_env, struct module_env* env,
uint8_t* name, size_t namelen, uint16_t qtype, time_t now,
struct delegpt* dp, int* selected_rtt, int open_target,
struct sock_list* blacklist)
{
int got_num = 0, low_rtt = 0, swap_to_front;
struct delegpt_addr* a, *n, *prev=NULL;
/* fillup sel_rtt and find best rtt in the bunch */
got_num = iter_fill_rtt(iter_env, env, name, namelen, qtype, now, dp,
&low_rtt, blacklist);
if(got_num == 0)
return 0;
if(low_rtt >= USEFUL_SERVER_TOP_TIMEOUT &&
(delegpt_count_missing_targets(dp) > 0 || open_target > 0)) {
verbose(VERB_ALGO, "Bad choices, trying to get more choice");
return 0; /* we want more choice. The best choice is a bad one.
return 0 to force the caller to fetch more */
}
got_num = 0;
a = dp->result_list;
while(a) {
/* skip unsuitable targets */
if(a->sel_rtt == -1) {
prev = a;
a = a->next_result;
continue;
}
/* classify the server address and determine what to do */
swap_to_front = 0;
if(a->sel_rtt >= low_rtt && a->sel_rtt - low_rtt <= RTT_BAND) {
got_num++;
swap_to_front = 1;
} else if(a->sel_rtt<low_rtt && low_rtt-a->sel_rtt<=RTT_BAND) {
got_num++;
swap_to_front = 1;
}
/* swap to front if necessary, or move to next result */
if(swap_to_front && prev) {
n = a->next_result;
prev->next_result = n;
a->next_result = dp->result_list;
dp->result_list = a;
a = n;
} else {
prev = a;
a = a->next_result;
}
}
*selected_rtt = low_rtt;
if (env->cfg->prefer_ip6) {
int got_num6 = 0;
int low_rtt6 = 0;
int i;
prev = NULL;
a = dp->result_list;
for(i = 0; i < got_num; i++) {
swap_to_front = 0;
if(a->addr.ss_family == AF_INET6) {
got_num6++;
swap_to_front = 1;
if(low_rtt6 == 0 || a->sel_rtt < low_rtt6) {
low_rtt6 = a->sel_rtt;
}
}
/* swap to front if IPv6, or move to next result */
if(swap_to_front && prev) {
n = a->next_result;
prev->next_result = n;
a->next_result = dp->result_list;
dp->result_list = a;
a = n;
} else {
prev = a;
a = a->next_result;
}
}
if(got_num6 > 0) {
got_num = got_num6;
*selected_rtt = low_rtt6;
}
}
return got_num;
}
struct delegpt_addr*
iter_server_selection(struct iter_env* iter_env,
struct module_env* env, struct delegpt* dp,
uint8_t* name, size_t namelen, uint16_t qtype, int* dnssec_lame,
int* chase_to_rd, int open_target, struct sock_list* blacklist)
{
int sel;
int selrtt;
struct delegpt_addr* a, *prev;
int num = iter_filter_order(iter_env, env, name, namelen, qtype,
*env->now, dp, &selrtt, open_target, blacklist);
if(num == 0)
return NULL;
verbose(VERB_ALGO, "selrtt %d", selrtt);
if(selrtt > BLACKLIST_PENALTY) {
if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*3) {
verbose(VERB_ALGO, "chase to "
"blacklisted recursion lame server");
*chase_to_rd = 1;
}
if(selrtt-BLACKLIST_PENALTY > USEFUL_SERVER_TOP_TIMEOUT*2) {
verbose(VERB_ALGO, "chase to "
"blacklisted dnssec lame server");
*dnssec_lame = 1;
}
} else {
if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*3) {
verbose(VERB_ALGO, "chase to recursion lame server");
*chase_to_rd = 1;
}
if(selrtt > USEFUL_SERVER_TOP_TIMEOUT*2) {
verbose(VERB_ALGO, "chase to dnssec lame server");
*dnssec_lame = 1;
}
if(selrtt == USEFUL_SERVER_TOP_TIMEOUT) {
verbose(VERB_ALGO, "chase to blacklisted lame server");
return NULL;
}
}
if(num == 1) {
a = dp->result_list;
if(++a->attempts < OUTBOUND_MSG_RETRY)
return a;
dp->result_list = a->next_result;
return a;
}
/* randomly select a target from the list */
log_assert(num > 1);
/* grab secure random number, to pick unexpected server.
* also we need it to be threadsafe. */
sel = ub_random_max(env->rnd, num);
a = dp->result_list;
prev = NULL;
while(sel > 0 && a) {
prev = a;
a = a->next_result;
sel--;
}
if(!a) /* robustness */
return NULL;
if(++a->attempts < OUTBOUND_MSG_RETRY)
return a;
/* remove it from the delegation point result list */
if(prev)
prev->next_result = a->next_result;
else dp->result_list = a->next_result;
return a;
}
struct dns_msg*
dns_alloc_msg(sldns_buffer* pkt, struct msg_parse* msg,
struct regional* region)
{
struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
sizeof(struct dns_msg));
if(!m)
return NULL;
memset(m, 0, sizeof(*m));
if(!parse_create_msg(pkt, msg, NULL, &m->qinfo, &m->rep, region)) {
log_err("malloc failure: allocating incoming dns_msg");
return NULL;
}
return m;
}
struct dns_msg*
dns_copy_msg(struct dns_msg* from, struct regional* region)
{
struct dns_msg* m = (struct dns_msg*)regional_alloc(region,
sizeof(struct dns_msg));
if(!m)
return NULL;
m->qinfo = from->qinfo;
if(!(m->qinfo.qname = regional_alloc_init(region, from->qinfo.qname,
from->qinfo.qname_len)))
return NULL;
if(!(m->rep = reply_info_copy(from->rep, NULL, region)))
return NULL;
return m;
}
void
iter_dns_store(struct module_env* env, struct query_info* msgqinf,
struct reply_info* msgrep, int is_referral, time_t leeway, int pside,
struct regional* region, uint16_t flags)
{
if(!dns_cache_store(env, msgqinf, msgrep, is_referral, leeway,
pside, region, flags))
log_err("out of memory: cannot store data in cache");
}
int
iter_ns_probability(struct ub_randstate* rnd, int n, int m)
{
int sel;
if(n == m) /* 100% chance */
return 1;
/* we do not need secure random numbers here, but
* we do need it to be threadsafe, so we use this */
sel = ub_random_max(rnd, m);
return (sel < n);
}
/** detect dependency cycle for query and target */
static int
causes_cycle(struct module_qstate* qstate, uint8_t* name, size_t namelen,
uint16_t t, uint16_t c)
{
struct query_info qinf;
qinf.qname = name;
qinf.qname_len = namelen;
qinf.qtype = t;
qinf.qclass = c;
qinf.local_alias = NULL;
fptr_ok(fptr_whitelist_modenv_detect_cycle(
qstate->env->detect_cycle));
return (*qstate->env->detect_cycle)(qstate, &qinf,
(uint16_t)(BIT_RD|BIT_CD), qstate->is_priming,
qstate->is_valrec);
}
void
iter_mark_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
{
struct delegpt_ns* ns;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->resolved)
continue;
/* see if this ns as target causes dependency cycle */
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass) ||
causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle (harden-glue: no may "
"fix some of the cycles)",
ns->name, LDNS_RR_TYPE_A,
qstate->qinfo.qclass);
ns->resolved = 1;
}
}
}
void
iter_mark_pside_cycle_targets(struct module_qstate* qstate, struct delegpt* dp)
{
struct delegpt_ns* ns;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->done_pside4 && ns->done_pside6)
continue;
/* see if this ns as target causes dependency cycle */
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_A, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle", ns->name,
LDNS_RR_TYPE_A, qstate->qinfo.qclass);
ns->done_pside4 = 1;
}
if(causes_cycle(qstate, ns->name, ns->namelen,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass)) {
log_nametypeclass(VERB_QUERY, "skipping target due "
"to dependency cycle", ns->name,
LDNS_RR_TYPE_AAAA, qstate->qinfo.qclass);
ns->done_pside6 = 1;
}
}
}
int
iter_dp_is_useless(struct query_info* qinfo, uint16_t qflags,
struct delegpt* dp)
{
struct delegpt_ns* ns;
/* check:
* o RD qflag is on.
* o no addresses are provided.
* o all NS items are required glue.
* OR
* o RD qflag is on.
* o no addresses are provided.
* o the query is for one of the nameservers in dp,
* and that nameserver is a glue-name for this dp.
*/
if(!(qflags&BIT_RD))
return 0;
/* either available or unused targets */
if(dp->usable_list || dp->result_list)
return 0;
/* see if query is for one of the nameservers, which is glue */
if( (qinfo->qtype == LDNS_RR_TYPE_A ||
qinfo->qtype == LDNS_RR_TYPE_AAAA) &&
dname_subdomain_c(qinfo->qname, dp->name) &&
delegpt_find_ns(dp, qinfo->qname, qinfo->qname_len))
return 1;
for(ns = dp->nslist; ns; ns = ns->next) {
if(ns->resolved) /* skip failed targets */
continue;
if(!dname_subdomain_c(ns->name, dp->name))
return 0; /* one address is not required glue */
}
return 1;
}
int
iter_indicates_dnssec_fwd(struct module_env* env, struct query_info *qinfo)
{
struct trust_anchor* a;
if(!env || !env->anchors || !qinfo || !qinfo->qname)
return 0;
/* a trust anchor exists above the name? */
if((a=anchors_lookup(env->anchors, qinfo->qname, qinfo->qname_len,
qinfo->qclass))) {
if(a->numDS == 0 && a->numDNSKEY == 0) {
/* insecure trust point */
lock_basic_unlock(&a->lock);
return 0;
}
lock_basic_unlock(&a->lock);
return 1;
}
/* no trust anchor above it. */
return 0;
}
int
iter_indicates_dnssec(struct module_env* env, struct delegpt* dp,
struct dns_msg* msg, uint16_t dclass)
{
struct trust_anchor* a;
/* information not available, !env->anchors can be common */
if(!env || !env->anchors || !dp || !dp->name)
return 0;
/* a trust anchor exists with this name, RRSIGs expected */
if((a=anchor_find(env->anchors, dp->name, dp->namelabs, dp->namelen,
dclass))) {
lock_basic_unlock(&a->lock);
return 1;
}
/* see if DS rrset was given, in AUTH section */
if(msg && msg->rep &&
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_DS, dclass))
return 1;
/* look in key cache */
if(env->key_cache) {
struct key_entry_key* kk = key_cache_obtain(env->key_cache,
dp->name, dp->namelen, dclass, env->scratch, *env->now);
if(kk) {
if(query_dname_compare(kk->name, dp->name) == 0) {
if(key_entry_isgood(kk) || key_entry_isbad(kk)) {
regional_free_all(env->scratch);
return 1;
} else if(key_entry_isnull(kk)) {
regional_free_all(env->scratch);
return 0;
}
}
regional_free_all(env->scratch);
}
}
return 0;
}
int
iter_msg_has_dnssec(struct dns_msg* msg)
{
size_t i;
if(!msg || !msg->rep)
return 0;
for(i=0; i<msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
if(((struct packed_rrset_data*)msg->rep->rrsets[i]->
entry.data)->rrsig_count > 0)
return 1;
}
/* empty message has no DNSSEC info, with DNSSEC the reply is
* not empty (NSEC) */
return 0;
}
int iter_msg_from_zone(struct dns_msg* msg, struct delegpt* dp,
enum response_type type, uint16_t dclass)
{
if(!msg || !dp || !msg->rep || !dp->name)
return 0;
/* SOA RRset - always from reply zone */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_SOA, dclass) ||
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_SOA, dclass))
return 1;
if(type == RESPONSE_TYPE_REFERRAL) {
size_t i;
/* if it adds a single label, i.e. we expect .com,
* and referral to example.com. NS ... , then origin zone
* is .com. For a referral to sub.example.com. NS ... then
* we do not know, since example.com. may be in between. */
for(i=0; i<msg->rep->an_numrrsets+msg->rep->ns_numrrsets;
i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS &&
ntohs(s->rk.rrset_class) == dclass) {
int l = dname_count_labels(s->rk.dname);
if(l == dp->namelabs + 1 &&
dname_strict_subdomain(s->rk.dname,
l, dp->name, dp->namelabs))
return 1;
}
}
return 0;
}
log_assert(type==RESPONSE_TYPE_ANSWER || type==RESPONSE_TYPE_CNAME);
/* not a referral, and not lame delegation (upwards), so,
* any NS rrset must be from the zone itself */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_NS, dclass) ||
reply_find_rrset_section_ns(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_NS, dclass))
return 1;
/* a DNSKEY set is expected at the zone apex as well */
/* this is for 'minimal responses' for DNSKEYs */
if(reply_find_rrset_section_an(msg->rep, dp->name, dp->namelen,
LDNS_RR_TYPE_DNSKEY, dclass))
return 1;
return 0;
}
/**
* check equality of two rrsets
* @param k1: rrset
* @param k2: rrset
* @return true if equal
*/
static int
rrset_equal(struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
{
struct packed_rrset_data* d1 = (struct packed_rrset_data*)
k1->entry.data;
struct packed_rrset_data* d2 = (struct packed_rrset_data*)
k2->entry.data;
size_t i, t;
if(k1->rk.dname_len != k2->rk.dname_len ||
k1->rk.flags != k2->rk.flags ||
k1->rk.type != k2->rk.type ||
k1->rk.rrset_class != k2->rk.rrset_class ||
query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
return 0;
if( /* do not check ttl: d1->ttl != d2->ttl || */
d1->count != d2->count ||
d1->rrsig_count != d2->rrsig_count ||
d1->trust != d2->trust ||
d1->security != d2->security)
return 0;
t = d1->count + d1->rrsig_count;
for(i=0; i<t; i++) {
if(d1->rr_len[i] != d2->rr_len[i] ||
/* no ttl check: d1->rr_ttl[i] != d2->rr_ttl[i] ||*/
memcmp(d1->rr_data[i], d2->rr_data[i],
d1->rr_len[i]) != 0)
return 0;
}
return 1;
}
int
reply_equal(struct reply_info* p, struct reply_info* q, struct regional* region)
{
size_t i;
if(p->flags != q->flags ||
p->qdcount != q->qdcount ||
/* do not check TTL, this may differ */
/*
p->ttl != q->ttl ||
p->prefetch_ttl != q->prefetch_ttl ||
*/
p->security != q->security ||
p->an_numrrsets != q->an_numrrsets ||
p->ns_numrrsets != q->ns_numrrsets ||
p->ar_numrrsets != q->ar_numrrsets ||
p->rrset_count != q->rrset_count)
return 0;
for(i=0; i<p->rrset_count; i++) {
if(!rrset_equal(p->rrsets[i], q->rrsets[i])) {
if(!rrset_canonical_equal(region, p->rrsets[i],
q->rrsets[i])) {
regional_free_all(region);
return 0;
}
regional_free_all(region);
}
}
return 1;
}
void
caps_strip_reply(struct reply_info* rep)
{
size_t i;
if(!rep) return;
/* see if message is a referral, in which case the additional and
* NS record cannot be removed */
/* referrals have the AA flag unset (strict check, not elsewhere in
* unbound, but for 0x20 this is very convenient). */
if(!(rep->flags&BIT_AA))
return;
/* remove the additional section from the reply */
if(rep->ar_numrrsets != 0) {
verbose(VERB_ALGO, "caps fallback: removing additional section");
rep->rrset_count -= rep->ar_numrrsets;
rep->ar_numrrsets = 0;
}
/* is there an NS set in the authority section to remove? */
/* the failure case (Cisco firewalls) only has one rrset in authsec */
for(i=rep->an_numrrsets; i<rep->an_numrrsets+rep->ns_numrrsets; i++) {
struct ub_packed_rrset_key* s = rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NS) {
/* remove NS rrset and break from loop (loop limits
* have changed) */
/* move last rrset into this position (there is no
* additional section any more) */
verbose(VERB_ALGO, "caps fallback: removing NS rrset");
if(i < rep->rrset_count-1)
rep->rrsets[i]=rep->rrsets[rep->rrset_count-1];
rep->rrset_count --;
rep->ns_numrrsets --;
break;
}
}
}
int caps_failed_rcode(struct reply_info* rep)
{
return !(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR ||
FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN);
}
void
iter_store_parentside_rrset(struct module_env* env,
struct ub_packed_rrset_key* rrset)
{
struct rrset_ref ref;
rrset = packed_rrset_copy_alloc(rrset, env->alloc, *env->now);
if(!rrset) {
log_err("malloc failure in store_parentside_rrset");
return;
}
rrset->rk.flags |= PACKED_RRSET_PARENT_SIDE;
rrset->entry.hash = rrset_key_hash(&rrset->rk);
ref.key = rrset;
ref.id = rrset->id;
/* ignore ret: if it was in the cache, ref updated */
(void)rrset_cache_update(env->rrset_cache, &ref, env->alloc, *env->now);
}
/** fetch NS record from reply, if any */
static struct ub_packed_rrset_key*
reply_get_NS_rrset(struct reply_info* rep)
{
size_t i;
for(i=0; i<rep->rrset_count; i++) {
if(rep->rrsets[i]->rk.type == htons(LDNS_RR_TYPE_NS)) {
return rep->rrsets[i];
}
}
return NULL;
}
void
iter_store_parentside_NS(struct module_env* env, struct reply_info* rep)
{
struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
if(rrset) {
log_rrset_key(VERB_ALGO, "store parent-side NS", rrset);
iter_store_parentside_rrset(env, rrset);
}
}
void iter_store_parentside_neg(struct module_env* env,
struct query_info* qinfo, struct reply_info* rep)
{
/* TTL: NS from referral in iq->deleg_msg,
* or first RR from iq->response,
* or servfail5secs if !iq->response */
time_t ttl = NORR_TTL;
struct ub_packed_rrset_key* neg;
struct packed_rrset_data* newd;
if(rep) {
struct ub_packed_rrset_key* rrset = reply_get_NS_rrset(rep);
if(!rrset && rep->rrset_count != 0) rrset = rep->rrsets[0];
if(rrset) ttl = ub_packed_rrset_ttl(rrset);
}
/* create empty rrset to store */
neg = (struct ub_packed_rrset_key*)regional_alloc(env->scratch,
sizeof(struct ub_packed_rrset_key));
if(!neg) {
log_err("out of memory in store_parentside_neg");
return;
}
memset(&neg->entry, 0, sizeof(neg->entry));
neg->entry.key = neg;
neg->rk.type = htons(qinfo->qtype);
neg->rk.rrset_class = htons(qinfo->qclass);
neg->rk.flags = 0;
neg->rk.dname = regional_alloc_init(env->scratch, qinfo->qname,
qinfo->qname_len);
if(!neg->rk.dname) {
log_err("out of memory in store_parentside_neg");
return;
}
neg->rk.dname_len = qinfo->qname_len;
neg->entry.hash = rrset_key_hash(&neg->rk);
newd = (struct packed_rrset_data*)regional_alloc_zero(env->scratch,
sizeof(struct packed_rrset_data) + sizeof(size_t) +
sizeof(uint8_t*) + sizeof(time_t) + sizeof(uint16_t));
if(!newd) {
log_err("out of memory in store_parentside_neg");
return;
}
neg->entry.data = newd;
newd->ttl = ttl;
/* entry must have one RR, otherwise not valid in cache.
* put in one RR with empty rdata: those are ignored as nameserver */
newd->count = 1;
newd->rrsig_count = 0;
newd->trust = rrset_trust_ans_noAA;
newd->rr_len = (size_t*)((uint8_t*)newd +
sizeof(struct packed_rrset_data));
newd->rr_len[0] = 0 /* zero len rdata */ + sizeof(uint16_t);
packed_rrset_ptr_fixup(newd);
newd->rr_ttl[0] = newd->ttl;
sldns_write_uint16(newd->rr_data[0], 0 /* zero len rdata */);
/* store it */
log_rrset_key(VERB_ALGO, "store parent-side negative", neg);
iter_store_parentside_rrset(env, neg);
}
int
iter_lookup_parent_NS_from_cache(struct module_env* env, struct delegpt* dp,
struct regional* region, struct query_info* qinfo)
{
struct ub_packed_rrset_key* akey;
akey = rrset_cache_lookup(env->rrset_cache, dp->name,
dp->namelen, LDNS_RR_TYPE_NS, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side NS in cache", akey);
dp->has_parent_side_NS = 1;
/* and mark the new names as lame */
if(!delegpt_rrset_add_ns(dp, region, akey, 1)) {
lock_rw_unlock(&akey->entry.lock);
return 0;
}
lock_rw_unlock(&akey->entry.lock);
}
return 1;
}
int iter_lookup_parent_glue_from_cache(struct module_env* env,
struct delegpt* dp, struct regional* region, struct query_info* qinfo)
{
struct ub_packed_rrset_key* akey;
struct delegpt_ns* ns;
size_t num = delegpt_count_targets(dp);
for(ns = dp->nslist; ns; ns = ns->next) {
/* get cached parentside A */
akey = rrset_cache_lookup(env->rrset_cache, ns->name,
ns->namelen, LDNS_RR_TYPE_A, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side", akey);
ns->done_pside4 = 1;
/* a negative-cache-element has no addresses it adds */
if(!delegpt_add_rrset_A(dp, region, akey, 1))
log_err("malloc failure in lookup_parent_glue");
lock_rw_unlock(&akey->entry.lock);
}
/* get cached parentside AAAA */
akey = rrset_cache_lookup(env->rrset_cache, ns->name,
ns->namelen, LDNS_RR_TYPE_AAAA, qinfo->qclass,
PACKED_RRSET_PARENT_SIDE, *env->now, 0);
if(akey) {
log_rrset_key(VERB_ALGO, "found parent-side", akey);
ns->done_pside6 = 1;
/* a negative-cache-element has no addresses it adds */
if(!delegpt_add_rrset_AAAA(dp, region, akey, 1))
log_err("malloc failure in lookup_parent_glue");
lock_rw_unlock(&akey->entry.lock);
}
}
/* see if new (but lame) addresses have become available */
return delegpt_count_targets(dp) != num;
}
int
iter_get_next_root(struct iter_hints* hints, struct iter_forwards* fwd,
uint16_t* c)
{
uint16_t c1 = *c, c2 = *c;
int r1 = hints_next_root(hints, &c1);
int r2 = forwards_next_root(fwd, &c2);
if(!r1 && !r2) /* got none, end of list */
return 0;
else if(!r1) /* got one, return that */
*c = c2;
else if(!r2)
*c = c1;
else if(c1 < c2) /* got both take smallest */
*c = c1;
else *c = c2;
return 1;
}
void
iter_scrub_ds(struct dns_msg* msg, struct ub_packed_rrset_key* ns, uint8_t* z)
{
/* Only the DS record for the delegation itself is expected.
* We allow DS for everything between the bailiwick and the
* zonecut, thus DS records must be at or above the zonecut.
* And the DS records must be below the server authority zone.
* The answer section is already scrubbed. */
size_t i = msg->rep->an_numrrsets;
while(i < (msg->rep->an_numrrsets + msg->rep->ns_numrrsets)) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS &&
(!ns || !dname_subdomain_c(ns->rk.dname, s->rk.dname)
|| query_dname_compare(z, s->rk.dname) == 0)) {
log_nametypeclass(VERB_ALGO, "removing irrelevant DS",
s->rk.dname, ntohs(s->rk.type),
ntohs(s->rk.rrset_class));
memmove(msg->rep->rrsets+i, msg->rep->rrsets+i+1,
sizeof(struct ub_packed_rrset_key*) *
(msg->rep->rrset_count-i-1));
msg->rep->ns_numrrsets--;
msg->rep->rrset_count--;
/* stay at same i, but new record */
continue;
}
i++;
}
}
void iter_dec_attempts(struct delegpt* dp, int d)
{
struct delegpt_addr* a;
for(a=dp->target_list; a; a = a->next_target) {
if(a->attempts >= OUTBOUND_MSG_RETRY) {
/* add back to result list */
a->next_result = dp->result_list;
dp->result_list = a;
}
if(a->attempts > d)
a->attempts -= d;
else a->attempts = 0;
}
}
void iter_merge_retry_counts(struct delegpt* dp, struct delegpt* old)
{
struct delegpt_addr* a, *o, *prev;
for(a=dp->target_list; a; a = a->next_target) {
o = delegpt_find_addr(old, &a->addr, a->addrlen);
if(o) {
log_addr(VERB_ALGO, "copy attempt count previous dp",
&a->addr, a->addrlen);
a->attempts = o->attempts;
}
}
prev = NULL;
a = dp->usable_list;
while(a) {
if(a->attempts >= OUTBOUND_MSG_RETRY) {
log_addr(VERB_ALGO, "remove from usable list dp",
&a->addr, a->addrlen);
/* remove from result list */
if(prev)
prev->next_usable = a->next_usable;
else dp->usable_list = a->next_usable;
/* prev stays the same */
a = a->next_usable;
continue;
}
prev = a;
a = a->next_usable;
}
}
int
iter_ds_toolow(struct dns_msg* msg, struct delegpt* dp)
{
/* if for query example.com, there is example.com SOA or a subdomain
* of example.com, then we are too low and need to fetch NS. */
size_t i;
/* if we have a DNAME or CNAME we are probably wrong */
/* if we have a qtype DS in the answer section, its fine */
for(i=0; i < msg->rep->an_numrrsets; i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DNAME ||
ntohs(s->rk.type) == LDNS_RR_TYPE_CNAME) {
/* not the right answer, maybe too low, check the
* RRSIG signer name (if there is any) for a hint
* that it is from the dp zone anyway */
uint8_t* sname;
size_t slen;
val_find_rrset_signer(s, &sname, &slen);
if(sname && query_dname_compare(dp->name, sname)==0)
return 0; /* it is fine, from the right dp */
return 1;
}
if(ntohs(s->rk.type) == LDNS_RR_TYPE_DS)
return 0; /* fine, we have a DS record */
}
for(i=msg->rep->an_numrrsets;
i < msg->rep->an_numrrsets + msg->rep->ns_numrrsets; i++) {
struct ub_packed_rrset_key* s = msg->rep->rrsets[i];
if(ntohs(s->rk.type) == LDNS_RR_TYPE_SOA) {
if(dname_subdomain_c(s->rk.dname, msg->qinfo.qname))
return 1; /* point is too low */
if(query_dname_compare(s->rk.dname, dp->name)==0)
return 0; /* right dp */
}
if(ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC ||
ntohs(s->rk.type) == LDNS_RR_TYPE_NSEC3) {
uint8_t* sname;
size_t slen;
val_find_rrset_signer(s, &sname, &slen);
if(sname && query_dname_compare(dp->name, sname)==0)
return 0; /* it is fine, from the right dp */
return 1;
}
}
/* we do not know */
return 1;
}
int iter_dp_cangodown(struct query_info* qinfo, struct delegpt* dp)
{
/* no delegation point, do not see how we can go down,
* robust check, it should really exist */
if(!dp) return 0;
/* see if dp equals the qname, then we cannot go down further */
if(query_dname_compare(qinfo->qname, dp->name) == 0)
return 0;
/* if dp is one label above the name we also cannot go down further */
if(dname_count_labels(qinfo->qname) == dp->namelabs+1)
return 0;
return 1;
}